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Axisymmetric equilibrium shapes and stability of linearly polarizable dielectric 
(ferrofluid) drops of fixed volume which are pendant/sessile on one plate of a parallel- 
plate capacitor and are subjected to an applied electric (magnetic) field are 
determined by solving simultaneously the free boundary problem comprised of the 
Young-Laplace equation for drop shape and the Laplace equation for electric 
(magnetic) field distribution. When the contact angle that the drop makes with the 
plate is fixed to be 90" and the distance between the plates is infinite, the results are 
identical to  those of a free drop immersed in a uniform field and resolve discrepancies 
between previously reported theoretical predictions and experimental measure- 
ments. Remarkably, regardless of the value of the ratio of the permittivity 
(permeability) of the drop to that of the surrounding fluid, K ,  drop shapes develop 
conical tips as drop deformation increases. However, three types of behaviour are 
found, depending on the value of K .  When K < K ~ ,  the drop deformation grows 
without bound as field strength rises. On the other hand, when K > K~ > K ~ ,  families 
of equilibrium drop shapes become unstable at turning points with respect to field 
strength. Beyond the turning points, the unstable families terminate : the mean 
curvature at  the virtually conical drop tip grows without bound. However, in the 
range K~ < K < K ~ ,  the new results predict that drop deformation exhibits hysteresis, 
in accord with experiments of Bacri, Salin & Massart (1982) and Bacri & Salin (1982, 
1983). Such hysteresis phenomena have been surmized previously on the basis of 
approximate theories, though they have not been calculated systematically until 
now. Moreover, detailed computations reveal the importance of varying the drop size 
and plate spacing, and whether, along the three-phase contact line, the contact line 
is fixed or the contact angle is prescribed. 

1. Introduction 
Benjamin Franklin (1751) and later Lord Rayleigh (1879, 1882) pioneered the 

study of the effects of electric fields and charges on liquid drops. Rayleigh's (1882) 
pioneering theoretical analysis of the limit of stability of an isolated, surface-charged 
liquid sphere-an approximation to a real rain drop-inaugurated a century of 
research on the shapes and stability of electrified drops and electrified interfaces in 
general, and marked the birth of the science of electrohydrodynamics (Melcher & 
Taylor 1969). Interest in the effects of electric fields on liquid drops has continued to 
grow in the last several decades because electrified drops are central to areas of 
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FIGURE 1.  Axisymmetric dielectric drop on a face of a circular parallel-plate capacitor. 

science and technology as diverse as nuclear physics (Bohr & Wheeler 1939; Cohen, 
Plasil & Swiatecki 1974 ; Pelekasis, Tsamopoulos & Manolis 1990), meteorology 
(Sartor 1969; Beard, Ochs & Kubesh 1989), chemical engineering (Chang & Berg 
1985; Basaran, Scott & Byers 1989), and materials processing in reduced gravity 
(Carruthers & Testardi 1983; Rhim, Chung & Elleman 1989). 

The subject of this paper is the axisymmetric equilibrium shapes and stability of 
linearly polarizable dielectric drops that are surrounded by another linearly 
polarizable dielectric fluid and are pendant or sessile on a face of a parallel-plate 
capacitor, as shown in figure 1.  It is appropriate to note that the limit in which the 
ratio of the permittivity of the drop to that of the surrounding fluid K tends to 
infinity describes the case of a conducting drop. Also, when the contact angle that the 
drop makes with the plate is fixed to be go", the relative importance of gravitational 
force is vanishingly small compared to electrical and surface tension forces, and the 
distance between the plates is infinite, the physics is identical to that of the often- 
studied problem of a free drop in a uniform external field (cf. Wilson & Taylor 1925; 
Basaran & Scriven 1989b, 1990). Moreover, the equations that govern the response 
of a drop of a dielectric fluid in an applied electric field are the same as those that 
govern the response of a drop of a magnetic liquid, or a ferrofluid, in an applied 
magnetic field (cf. Rosensweig 1979, 1985; Melcher & Taylor 1969; Melcher 1981). 
Therefore, the results presented here in the context of the electrical problem apply 
equally well to the magnetic case. 

The equilibrium shapes of electrified drops are governed by a nonlinear differential 
equation, the augmented Young-Laplace equation (see, e.g. Taylor 1964 ; Miksis 
1981, Basaran & Scriven 1982, 1989a, b ,  1990; Adornato & Brown 1983), which is the 
mathematical statement of the requisite balance on the interface between surface 
tension, gravitational, and electrical forces. When the fluid inside the drop is a 
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FIGURE 2. Effect of ratio of permittivity of drop to that of surrounding fluid K on the variation 
of aspect ratio alb as a function of dimensionless field strength Em. 

linearly polarizable dielectric or a perfect conductor and the fluid outside is another 
linearly polarizable dielectric, the force represented by the electrical pressure term is 
governed by a linear equation, the Laplace differential equation or an equivalent 
integral equation for the electrostatic field, but in a region in which part of the 
boundary, the drop surface, is curved and unknown a priorm. Thus the potential 
problem too is nonlinear. Drop shape and electrostatic field need to be found 
simultaneously. Closed-form or analytical solutions of this free boundary problem 
are rare ; solution by means of numerical methods is a powerful alternative, and the 
only one except in limiting cases. 

In a now celebrated paper, Taylor (1964) approximated the equilibrium shapes of 
a perfectly conducting ( K  + co), free drop in an external electric field as spheroids. He 
required the augmented Young-Laplace equation to be satisfied a t  the north pole 
and the equator, though not necessarily between. By means of this two-point 
approximation, Taylor showed that such a drop is neutrally stable with respect to 
infinitesimal-amplitude perturbations at  a turning (or limit) point in applied field 
strength. The drop shapes in this spheroidal family uncovered by Taylor (1964) are 
(linearly) stable up to the turning point and are unstable beyond it. The Taylor limit 
of stability (see figure 2) has now been verified by numerous investigators using 
various numerical methods. These include the early work of Brazier-Smith (1971) 
and the more recent and more accurate works of Miksis (1981), who used a boundary- 
integral (element) method to solve the potential problem, and Basaran & Scriven 
(1982, 1989b, 1990) and Adornato & Brown (1983), who used the Galerkin/finite- 
element method. 

The case of a free dielectric drop, i.e. arbitrary K ,  was first analysed by Rosenkilde 
(1969), who approximated the drop shapes as ellipsoids and used the moment method 
developed by Chandrasekhar (1969). Rosenkilde found two types of response, 
depending on whether K, c K < co or K < K, (where K, x 20.801), as shown in figure 2. 
When K < K,, drop deformation grows without bound as field strength increases, and 
drop shapes are stable for all values of the applied field strength (and drop 
deformation). However, when K > K,, drop deformation exhibits hysteresis. In other 
words, as the electric field strength increases from zero, the drop is stable until a 
critical field strength. Beyond the first turning point, the unstable branch of the 
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family of equilibrium drop shapes moves toward lower values of the field strength, 
and the family subsequently regains stability at a second turning point in field 
strength. In  an experiment, the drop would undergo a finite jump in deformation as 
the field is increased by an infinitesimal amount a t  the first turning point and i t  
would undergo a finite reduction in deformation as the field is decreased by an 
infinitesimal amount at the second turning point. The approximate analyses of 
Taylor (1964) &nd Rosenkilde (1969) indicated that the drop deformation would 
grow indefinitely with increasing (decreasing) field strength. 

Miksis (1981), motivated by the desire to predict theoretically thc conical tips 
often seen in experiments, used a boundary-integral method to analyse rigorously 
the problem of a free dielectric drop in an external electric field. He also generalized 
Taylor’s (1964) two-point method to this problem. With the two-point method, he 
attained results that  were qualitatively the same as those found by Rosenkilde 
(1969) and determined that K, = 18.08. With his boundary-integral method, Miksis 
(1981) showed that K, lies between 19 and 20 and found the same qualitative response 
as he and Rosenkilde (1969) did with the spheroidal approximation when K < K,. 

Moreover, with the more rigorous boundary-integral method, he did not observe 
hysteresis and found that drop deformation did not grow indefinitely when K > K,. 

Indeed, he was able to extrapolate that, when K > K,, there is a maximum value of 
drop deformation at which families of equilibrium shapes terminate. 

However, in a series of experiments with aggregates of ferrofluid drops in a 
magnetic field, Bacri, Salin & Massart (1982) and Bacri & Salin (1982, 1983) reported 
hysteresis in drop deformation. They also used a spheroidal approximation of the 
drop shape and energy minimization arguments to model their experiments and 
thereby surmized that hysteresis can occur when K > K,, where K, 2 20. Their 
spheroidal approximation predicted that drop deformation can grow indefinitely. In  
their experiments with aggregates of drops, they estimated a value of K for their 
ferrofluid of about 40 for which they observed hysteresis. However, this value of K was 
not measured directly, but instead was back-calculated from a fit of the observed 
hysteresis curve to that obtained by the spheroidal approximation. Nevertheless, 
these authors recognized the limitation of their spheroidal approximation : the drop 
shapes they observed became very conical a t  the tips at large deformations, 
signalling the breakdown of the spheroidal approximation. 

Sherwood (1988), motivated by the experiments of Bacri and co-workers, among 
other things, analysed theoretically the response of free dielectric drops in an electric 
field. Instead of determining equilibrium drop shapes directly, Sherwood solved for 
the time-dependent flow in a dielectric drop induced by an electric field. He assumed 
conditions of creeping flow to hold both inside and outside the drop and solved the 
Stokes equations for the flow and the Laplace equation for the electric field 
distribution by boundary-integral (element) methods. Although he does not state 
computational times or the number of time-steps required to reach an equilibrium 
solution, use of a transient simulation to calculate equilibrium shapes can be 
computationally costly. By means of such transient calculations, Sherwood found 
hysteresis in drop deformation when K = 20. However, he encountered difficulties in 
following the deformation curves for the shape families shown in figure 2 when 
K 2 K,. At the same value of the field strength, calculated values of the equilibrium 
aspect ratio differed by over 10Y0 when he followed a drop through the hysteresis 
loop. Sherwood refined the value of K, to be between 19.6 and 19.7. When K = 25 and 
for other values of K =+ 20, he was unable to jump from the lower branch of stable 
solutions to the upper one. He also reported finding equilibrium solutions along the 
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upper stable branch of solutions if he started his simulations from an initial drop 
state close to equilibrium, but he could not jump from these states down to ones on 
the lower branch. 

Theoretical and experimental studies of supported - pendant and sessile ~ 

magnetic drops reveal results that are qualitatively the same as those for free drops. 
Berkovsky & Kalikmanov ( 1985) used a spheroidal approximation to surmize that 
hysteresis can occur with a magnetic fluid having a high enough susceptibility. 
Brancher & Zouaoui (1987) also used a spheroidal approximation to surmize that 
hysteresis can occur and carried out experiments to investigate the formation of 
conical tips a t  high field strengths. Berkovsky et al. (1987) performed experiments 
with sessile magnetic drops to investigate primarily the effects of the magnetic 
properties of the substrate on drop shape and stability. Budnik & Polevikov (1987) 
determined numerically meniscus shapes and magnetic field distributions in and 
around sessile drops. However, their computations failed at  moderate drop 
deformations. Moreover, they carried out too few calculations to draw any general 
conclusions and were unable to detect hysteresis Boudouvis, Puchalla & Scriven 
(1988) performed carefully controlled experiments and Galerkin/finite-element 
calculations to probe the effects of wetting, fringing fields, and variable susceptibility 
on the equilibria and stability of sessile drops of ferrofluid. However, Boudouvis 
et a l .  did not investigate the possibility of hysteresis in their experiments or 
calculations. 

Accurately calculating equilibrium families of dielectric drops and their stability, 
and thereby solving the long-standing problem of if and when hysteresis can be 
observed, are the major goals of this paper. Section 2 presents the equations and 
boundary conditions that govern the equilibrium shapes of a dielectric drop on a face 
of a circular parallel-plate capacitor. Section 3 outlines the Galerkin/finite-element 
formulation of the governing equations for computer-aided calculation of families of 
drop shapes and their stability. Section 4 presents solution families, drop shapes, and 
potential and electric fields computed from the theoretical analysis. Finally, in $5 
these results are compared to experimental results reported by Bacri et al. (1982) and 
Bacri & Salin (1982, 1983), and opportunities for future research are outlined. 

2. Mathematical formulation 
2.1. Governing equations and boundary conditions 

An axisymmetric drop of a linearly polarizable dielectric of permittivity eb 
surrounded by another linearly polarizable fluid insulator of permittivity E ,  sits on or 
hangs from, i.e. is sessile on or pendant from, one face of a circular parallel-plate 
capacitor of radius large compared to distance h between the plates, as shown in 
figure 1. The surface tension of the drop/ambient fluid interface is r. One plate of the 
capacitor is a t  potential u,, relative to the other, which is grounded. The drop shape 
and the electrostatic field E = -VU,  where U denotes the electrostatic potential 
inside and outside the drop, are governed by the augmented Young-Laplace and 
Laplace equations, respectively, 

(1) 

V 2 U = 0  in <and V,. (2) 

- 2 X  = K -  Gz +N,  H2[EF)2 - K E ~ ~ ) ~  + ( K  - 1) E;] on s,, 

Ss is the drop surface, V,  is the region between the two plates outside the drop, and 
V, is the region inside the drop. Equations (1) and (2) are dimensionless because 
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length is measured in units of R,  a characteristic length to be defined shortly, 
potential U is measured in units of u,, and 

A variable appearing with a tilde above i t  is dimensional; without a tilde it is 
dimensionless. 2% is twice the local mean curvature of the interface and is the 
negative of the surface divergence of the field of unit normals to the drop surface, i.e. 
2% = -Vs.ns; z is distance measured from the origin in the direction opposite to 
gravity ; reference pressure K is simply the pressure excess Apo a t  the level of the 
plane called z = 0 in the drop, measured in units of half the capillary pressure within 
an uncharged spherical drop of radius R. En and ltt are the normal and tangential 
components, respectively, of the electric field a t  the drop surface. Subscripts and 
superscripts a and b denote the exterior and interior of the drop, respectively. K is the 
ratio of the permittivity, or the dielectric constant, of the drop material to that of 
the surrounding fluid. N ,  is the electric bond number and its square root, 
A$ = (uo/h) (eaR/2c);, is the dimensionless parallel-plate electric field strength. It is 
supposed hereafter that the effect of gravity is far less than that of surface tension, 
i.e. the gravitational bond number G + 0 is vanishingly small ; g is the acceleration 
due to gravity and Ap the density difference between the drop and surrounding fluid. 
Though values of A p  9 0 correspond to drops and Ap < 0 to bubbles, they need not be 
distinguished here because G + 0. When C: --f 0, K is simply the dimensionless excess 
pressure in the drop over ambient pressure. The reference pressure K is set by 
constraining the drop volume to be a fixed amount 6 :  

v =  4. (5) 

The governing equations (1) and (2) are solved subject to  the boundary conditions 

where e, is a unit vector and a is the length of the drop in the z-direction. Equation 
(6) is the condition that the drop profile be axially symmetric. Equation (7)  is the 
boundary condition at  the contact line (circle), where xS€SS, 8, is the contact angle 
and nB is the unit normal to the bottom plate. Equation (7a )  is the limiting case in 
which the contact angle finally attains its equilibrium value on a smooth, 
homogeneous solid - the fixed contact angle condition ~ and ( 7 6 )  is the opposite limit 
of a virtually fixed contact circle, which is not uncommonly seen on shorter 
timescales or if there is a hole with a sharp edge a t  which the contact circle behaves 
as though pinned - the fixed contact line condition. Equations (8) and (9) are the 
boundary conditions that the surface potentials of the two plates must be uniform 
because they are conducting. Of course, interchanging the potentials of the two 
plates has no effect on drop shape and stability. Equation (10) is the condition that 
the electrostatic field and potential be axially symmetric and that far from the drop 
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FIQURE 3. Equilibrium drop shape: (a) drop shape represented in a composite coordinate system 
of cylindrical and spherical coordinates; (6) drop shapes are sections or segments of spheres when 
N,+O and G + O .  

the field asymptotically approach a vertically directed uniform field which has 
strength 1/H. Equations (11) and (12) are the conditions that the tangential 
component of the electric field and the normal component of the electric displacement 
be continuous across the interface (see e.g. Landau & Lifshitz 1960). 

2.2 .  Equilibrium drop shape i n  the absence of external forces 
When gravitationa! and electrical forces are vanishingly small compared to surface 
tension forces, the equilibrium drop shapes are segments of spheres and are 
conveniently parametrized in terms of the single parameter d ,  the signed distance 
from the centre of the sphere to the plate, or its ratio to the radius of the sphere, i.e. 
D = d / R .  If the drop shape is represented in cylindrical coordinates (x, z )  near the 
supporting plate and in spherical coordinates ( r ,  0) near the tip, then the interface 
shape function is 

(13) 
near the plate and 

x = g(z)  = ( l - ( D - ~ ) ~ ) f ,  0 < z G Z, 

r =  f ( 0 ) = - ( z , - D ) c o s 0 + ( 1 - ( z , - D ) 2 s i n 2 0 ) f ,  z ~ z , ,  O G 0 G ; n  (14) 

everywhere else, as shown in figure 3. z, is the length of the portion of the major axis 
of the drop that is represented in cylindrical coordinates and is defined in the next 
section. The drop volume is 

When I) = 0 the drop is a hemisphere; when D = 1 the sphere touches the top or 
bottom plate at one point ; and when D = - 1 there is no sphere. If the contact angle 
that the drop makes with the supporting plate is fixed, then the contact angle 

V,, = + 1 1 ( 1 + D ) ~ ( 2 - 0 ) .  (15) 

0, = cos-'D. 

3. Galerkinlfinite-element analysis 
Because of the highly deformed drop shapes that are seen in experiments and, 

therefore, must be calculated, a composite coordinate system made of a region of 
cylindrical coordinates and one of spherical coordinates is used in this paper (see 
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figure 3a) .  The use of such composite coordinate domains in free boundary problems 
was pioneered by Saito & Scriven (1981) in their study of slot coating and has been 
successfully applied by Ungar & Brown (1985) to solidification problems, Gupte & 
Tsamopoulos (1989) to the study of chemical vapour infiltration, and Benner, 
Basaran & Scriven (1991) to the study of rotating drop breakup. The transition 
between the two regions is chosen such that a constant fraction w, of the major axis 
of the drop a is representcd in cylindrical coordinates, z ,  = w,a. The problem 
domains in the cylindrical coordinate region arc Vb = ((2, z )  : 0 < x < g(z),  0 < z < z,} 
inside the drop, and V,  = ( ( 2 ,  z )  : g(z )  < x < S,, 0 < z < z,} outside the drop, where S, 
is the domain length measured along the plate. These regions are tessellated into a 
set of N, x Nrb and N, x N,, quadrilateral elements inside and outside the drop, 
respectively, where N, is the number of elements in the z-direction and Nrb and N,, 
are the number of elements in the x-direction inside and outside the drop, 
respectively. The origin of the spherical coordinate system is located on the axis of 
symmetry at  z = z,. Then the problem domains in the spherical coordinate region are 
V, = { ( r , 6 ) : 0  < r <f(8), 0 < 8 <in} inside the drop and V ,  = { ( r , O ) : j ( O )  < r < r,(8), 
0 < 8 G i n }  outside the drop. Here r * (8 )  = H/cosB for 0 < 8 < 8, and r,(B) = 
S,/sin 8 for 8, < 8 < in, where H = H-z,, and 8, = tan-' (S,/€€'). Thesc regions are 
tessellated into a set of No x Nrb and N, x N,, quadrilateral elements, where NB is the 
number of elements in the @direction and Nrb and N,, are the number of elements in 
the r-direction inside and outside thc drop, respectively. A sample mesh or 
tessellation with a very coarse grid (not used in the calculations) is shown in figure 

The vertices, midpoints of sides, and midpoints of the elements are called nodes. 
The elements are bordered by the fixed spines (Kistler & Scriven 1983) zzi-l and 8zj-l : 

4 (a,  b). 

z p i - l = s z i - I z , ,  i =  1 ,..., N , + l ,  for O < z d z ,  (16a)  

02j-1 = tzj- l  o,, j = 1, ..., N,+ 1 for o < e < e,, (16b)  

ez i - l=tz l - l (~~-e ,~+e, ,  j = ~ , + 2 ,  ..., ~ , + i  for O , < O < ~ K  ( 1 6 ~ )  

in the cylindrical coordinate system, and 

in the spherical coordinate system. Here N ,  is the number of elements in the 8- 
direction for 0 < 8 < 8,. In  the part of the domain represented in cylindrical 
coordinates, the elements are also bordered by the curves 

outside the drop. In the portion of the domain represented in spherical coordinates, 
the elements are bordered by the curves 

outside the drop. These curves move proportionally to the free surface along the 
spines. In (17ad) ,  sz i - l ,  t 2 j - l r  vZk-l, and wzl-l are weights chosen to concentrate the 
elements near the drop surface and drop tip, where they are needed. Equations (16) 
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FIGURE 4. Finite-element mesh (a) inside the drop and ( 6 )  outside the drop. This coarse mesh is for 
illustrative purposes and was not used in calculations. Here N, = 2, No = 4, Nrb = 2, and N,, = 4. 

and (17) prescribe the positions of only the vertex-nodes of the elements. Mid-side 
and mid-element nodes are located by requiring mid-elements spines to satisfy 
z2, = + ( Z ~ , - ~ + Z ~ ~ + ~ ) ,  i = 1, ..., N,, O,, = k(B,j-l+B,j+l), j = 1, ..., No, and by requiring 
the weights to satisfy v , ~  = ~ ( V , ~ - ~ + V , ~ + ~ ) ,  k = 1, ..., Nrb, and w , ~  = +(w,,-, + w , ~ + ~ ) ,  
1 = 1, . . . , Nra, which are enough to ensure that the Jacobian determinant of the 
isoparametric mapping introduced below does not vanish. 

Each curvilinear element is mapped onto the unit square with coordinates ( 5 , ~ ) ~  
0 < 5 , ~  < 1 by the isoparametric transformation (Strang & Fix 1973). On the unit 
square, nine biquadratic basis functions are defined in the standard way (Strang 
& Fix 1973). The basis functions have global numbers i ~ { l ,  2, ..., I } ,  where 

The unknown electrostatic potential is expanded in a set of biquadratic basis 
I =  (2N,+2N,+1)(2Nra+2Nr,+1). 

functions @ as 
I 

w4 = c a, $.“(E> V ) ,  (18) 
i-1 

where X E  V,  or V,. The coefficients a, are values of the potential at the nodes and 
a = (a1, ..., al) is the vector of all of them. 
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At the drop surface, only the basis functions P associated with free-surface nodes 
are non-zero. The free surface is interpolated globally as 

The drop surface maps onto the 7 = 0 edge of the ((,-q)-domain. The coefficients p, 
are nodal values of free surface location, = (PI, . . . , Ps) is the vector of all of them, 
and S = 2i?,+2iVZ+ 1 is the total number of free-surface nodes. 

The Galerkin weighted residuals of the Young-Laplace equation are 

RfL = Jss {22'? 4-K + N ,  H'(E?'' - KEkb)' + ( K  - 1) Et)}  P e k  * ns d S  

= 0, 5 = 1 ,  ..., s, (20) 

where ek = e, over the portion of the drop surface represented in cylindrical 
coordinates and ek = er over that represented in spherical coordinates. The curvature 
term in (20) is integrated by parts using the surface divergence theorem (Weatherburn 
1927) 

(21) Js 22'?@ ek'n dS = @ ek.mdL - VS. (@' e k )  ds, fL Js 
where m is a unit vector tangent to the surface S and normal to the curve L bounding 
S, to reduce terms involving the drop shape to first order in g and f (Basaran & 
Scriven 1990) : 

+ [K f N ,  H'(E2)' - KELb" + ( K  - 1 ) E;)] f ' P sin 6 d0 = 0. (22) 

The Galerkin-weighted residuals of the Laplace equation associated with nodes 
inside the drop are 

I 
RF = J vV2UdV = 0, i = I ,  ..., (uV,+uVz+ 1 )  (uVr,+ I ) ,  (23 ) 

'b 

and those associated with nodes outside the drop are 

r 

R,"=J  @,"V'UdV=O, i =  1,  ...,(2N,+2Nz+ 1) (2Nr ,+1)  
v, 

The Laplace residuals are also reduced to firsharder in U by means of the divergence 
theorem. The electrostatic potential is continuous across the drop surface (see ( 1  1 ) ) .  
Therefore, for those nodes lying along the drop surface, the versions of (23) and (24) 
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that result following the integration by parts are summed and the result simplified 
by means of (12) : 

R,L = [vaV$**VUudV+~ V$*.VU(b)dV = 0, i = 1,  ..., 1. s,, (25)  

Weighted by each @ in turn (22) provides S augmented Young-Laplace residual 
equations (R:L, . . . , R:L) = RyL, the same number as there are free-surface coefficients 
in (19). Similarly, weighted by each $* in turn (25) provides I Laplace residual 
equations (Rk, . . . , R,L) = RL, the same number as there are electrostatic potential 
coefficients in (18). 

The volume constraint (4) is rewritten as the JV- + 1 - st residual, where JV- = S +I, 

RN+, Rvc = V-V 0 = 0. (26) 

In  anticipation of turning points, another residual is defined which specifies an 
adaptive choice of parameter 9 (Abbott 1978), 

RN+2 9 - P 0 - A 9  = 0, (27) 

where 9, is the value of the parameter a t  a known solution w* on a family of 
solutions and the parameter step size A 9  is a specified increment to a new solution 
of R(w)  = (RYL, RL, RVC, RN+2) = 0 on the same family. The method for choosing the 
parameter 9 from among the entries of the solution w = (/I, a, K , N J  is described by 
Abbott (1978). Here, it was found adequate to restrict the choice of 9 to the subset 

The nonlinear set of algebraic equations R(w)  = 0 is solved simultaneously by 
Newton’s method (Ortega & Rheinboldt 1970) : given an initial approximation do) 
to the solution, the (k+l ) th  approximation is obtained from the kth by 

( t , K , N e ) .  

J(oW)) ( u ( k + l )  -OW)) = -R(m(k)) ,  (28) 

where J = a R / h  is the Jacobian matrix of partial derivatives. The linear system 
that results a t  each Newton iteration is then solved by direct factorization with a 
modification (Walters 1980) of Hood’s (1976) frontal solver. The Newton iteration 
was continued until the Euclidean norm (Isaacson & Keller 1966), i.e. the square root 
of the sum of squares, of both solution update A d k + l )  and residuals were less than 
a prescribed tolerance Ae. In  this paper Ae = lops. The theoretical asymptotic 
convergence of Newton iteration is second order (Isaacson & Keller 1966). That 
quadratic convergence is attained is an important test of the correct formulation of 
the Jacobian and, if the residuals are also right, error-free coding of the computation. 
Establishing the insensitivity, i.e. robustness, of computed solutions to refinement of 
the discretization or tessellation is also crucial and is discussed below. 

Critical to Newton’s method is the initial estimate do), which must be accurate 
enough to fall within the domain of convergence of the method. Tracking of solution 
families begins in the next section with the following initial estimate : the initial drop 
shape, g(O)(z) and f(O)(O), is given by (13) and (14), 

0 everywhere in V,  except on Sbottom, 

1 everywhere in V, and on Sbottom and S ,  (29) 

K(O) = 2 , Np = 0. (30,31) 

Thereafter a converged solution w*(S,,) is available ; the initial estimate for solution 

i j y 0 ’  = 
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FIGURE 5. Sensitivity of variation of aspect ratio a l b  with field strength to  mesh refinement in 

the r-direction outside the drop. 

at parameter value 9 = Po + A 9  is obtained by zeroth-order continuation over the 
increment A 9 .  Increments in A 9  were chosen here so that Newton's method 
typically converged in four to six iterations. 

While tracking solution families to be reported in the next section, no bifurcation 
points but many turning points were encountered. Because turning points signal 
stability limits (see e.g. Iooss & Joseph 1990; Ungar & Brown 1982), they are often 
more important than solutions themselves. 

The algorithm was programmed in FORTRAN. Program development and 
preliminary calculations were done on a DECstation 3100 a t  the Oak Ridge National 
Laboratory. All the calculations reported in this paper were carried out on a CRAY- 
YMP a t  the Florida State University Computing Center. 

The domain was tessellated into N, = 6, 8, and 10 non-uniform elements in the z- 
direction and No = 8, 12 and 16 uniform elements in the @direction along the drop 
surface and Nrb = 6, 8,  and 10 non-uniform elements inside the drop and N,, = 24,48, 
and 72 non-uniform elements outside the drop in the other direction, i.e. in the r- 
direction in spherical coordinates and in the x-direction in cylindrical coordinates. 
Calculations were made to show the sensitivity of the variation of aspect ratio a l b  
with field strength to  refinement in tessellation for a drop with K = 21 and making 
a fixed contact angle of 90" with the supporting plate. The maximum difference in 
the calculated aspect ratio remains less than 0.1 YO as the mesh is refined in the z- and 
&directions and in the r-direction inside the drop. In figure 5 ,  the maximum 
difference in the curves is about 1 YO when the number of r-elements outside the drop 
is increased from 24 to 48. However, despite this apparently small difference in the 
curves, there are major qualitative differences in the results obtained with these two 
meshes, which will be described in the next section. When the number of r-elements 
outside the drop is increased from 48 to  72, the maximum difference between the 
curves is less than 0.1%. Therefore, the results reported in the next section were 
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obtained on a tessellation of N, = 8, No = 12, Nrb = 8, and N,, = 48, a total of 1120 
elements and 4676 unknowns, unless stated otherwise. The calculation time for one 
parameter step was approximately 30 CPU seconds with this mesh. Typically 
100-200 parameter steps were required to fully understand the response of a drop in 
a situation in which K ,  D,  and the contact-line boundary condition were specified. 

4. Results 
Figure 6 (a ,  b) shows how the aspect ratio of dielectric drops making a fixed contact 

angle of 90' (D = 0) with the supporting plate varies with parallel-plate field strength 
4. There are three types of response. (i) When K < 20.25f0.25 the drops are 
everywhere stable over the region of field strengths examined and drop deformation 
increases monotonically with increasing field strength. (ii) When 21.75 f 0.25 2 
K 2 20.25f0.25 the drop deformation exhibits hysteresis. Drop shapes are stable 
along the branch up to  the first turning point and unstable along the branch between 
the two turning points. Beyond the second turning point, the drop regains stability 
and its deformation increases with increasing field strength over the region of field 
strengths examined. (iii) When K > 21.75f0.25, families of equilibrium drop shapes 
become unstable a t  a turning point with respect to field strength. Beyond the turning 
points, the unstable families terminate : this is a fact to which we return below. The 
curve for K + 00 is the limiting case of a conducting drop. The stability limit of such 
a conducting drop determined here agrees well with those reported by Taylor (1964), 
Miksis (1981), Adornato & Brown (1983), and Basaran & Scriven (1982,19893,1990). 

Table 1 shows that finite-element prediction of the transition from shape families 
displaying monotonic increase of alb with h$ to shape families turning back to lower 
values of the field strength a t  a turning point agrees well with previously published 
results. Figure 6 also makes clear why Sherwood (1988) was unsuccessful in jumping 
from the lower branch of stable solutions to an upper branch of stable solutions a t  
K = 25. 

The expression for twice the local mean curvature, 2 Z ,  involves second derivatives 
of the interface shape functions, f and g. It is illegal, in the finite-element sense 
(Strang & Fix 1973), to calculate second derivatives with the class of admissible CO 
basis functions used in this paper. Therefore, an average mean curvature at the drop 
tip is calculated here by means of the surface divergence theorem, (21), with @ = 1,  
over the first finite element 0 < 0 < O1 < 1 : 

J 2 2 e , - n d ~  -1 V,.e,dS+f sin8e,.ml,,,l 

e,.ndS e,.n dS 
. (32) 

( 2 ~ )  = Element 1 - Element1 

7- Element 1 

Figure 7 shows the variation of the reciprocal of the average mean curvature at the 
drop tip with increasing aspect ratio for initially hemispherical (D = 0) drops whose 
contact angles are prescribed. Plainly, the mean curvature a t  the drop tip increases 
as drop deformation increases. When K > 21.75f0.25, the mean curvature at the 
drop tip initially increases slowly, and then rapidly goes to infinity. Evidently, these 
families terminate when drop aspect ratio reaches some finite value. This finding 
agrees with the boundary-element prediction of Miksis (1981) and points to  the 
dangers of using such ad hoc approaches as the spheroidal approximation, which 
incorrectly predicts that  equilibrium solutions exist for all values of the drop aspect 
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FIQURE 6. (a )  Variation of aspect ratio a / b  of initially hemispherical drops whose contact angles 
are prescribed with field strength for various values of' K .  ( b )  Blow-up of the region showing 
transition in types of response. 

ratio. When K > 21.75f0.25, the computations end with the last calculated point 
shown in figure 7. To carry the calculations to a point where the mean curvature at 
the drop tip is virtually infinite would require finite-element tessellations with an 
order of magnitude or more as many unknowns as those used in this paper. Miksis 
(1981) too was forced to stop his computations before he could reach the point of 
termination of a shape family. When K < 21.75f0.25, the mean curvature a t  the 
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I 

FIGURE 7 .  Variation of the reciprocal of the average mean curvature at  the drop tip with 
increasing ratio for initially hemispherical drops whose contact angles are prescribed. 

Reference Method of solution Kc 

Rosenkilde (1969) Ellipsoidal approximation 20.8 

Miksis (1981) Spheroidal approximation 18.1 
with moment method 

with two-point method 
Boundary-integral method 19-20 

Sherwood (1988) Transient analysis/ 19.6-19.7 
boundary-integral method 

This work Finite-element method 2&20.5 

TABLE 1. Critical value of the ratio of the drop permittivity to that of the surrounding fluid, K,, for 
transition from monotonic increase of drop deformation along a shape family to shape families 
turning back to lower values of the field strength 

drop tip decreases smoothly with drop deformation and tends to infinity only 
asymptotically. When 21.7520.25 < K < 20.25+0.25, it was heretofore not known 
that the mean curvature a t  the drop tip tends to  infinity only as the aspect ratio goes 
to infinity and, consequently, that these families exhibiting hysteresis exist for all 
values of drop deformation. 

Using 24 quadratic elements (instead of 48) in the r-direction outside the drop, 
while keeping the number of elements unchanged elsewhere, the lower limit of K 

giving rise to hysteresis is reduced to a value between 19 and 20 and the upper limit 
is increased to a value between 25 and 30. When the mesh in the r-direction outside 
the drop is refined from 24 to  48 quadratic elements, the value of the electric field 
strength a t  the first turning point for K = 25 changes by less than 1.5 YO. Furthermore, 
when K = 25 the family of drop shapes computed with a tessellation of 24 elements 
in the r-direction outside the drop incorrectly exhibits hysteresis, whereas that 
computed with a tessellation of 48 elements in the r-direction outside the drop does 



496 

I 

6 

5 

4 
a 
b 

3 

2 

1 

0 

F .  K .  Wohlhuter and 0. A .  Basaran 

24 elements 

li' 
48 elements 1 

0.2 0.3 0.4 0.5 0.6 

FIGURE 8. Variation in the calculated response of initially hemispherical drops whose contact 
angles are prescribed with mesh refinement in the r-direction outside the drop when K = 25. 
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not, as shown in figure 8. Results of mesh refinement studies show that qualitative 
changes (i.e. hysteresis versus no hysteresis) in solution behaviour are the 
consequence when too few elements are deployed in the tessellation. Moreover, we 
have shown that close agreement up to the first turning point between shape families 
calculated with different meshes is not necessarily a sure indication that the 
calculated results are mesh-independent. The mesh-independence or robustness of 
the computed solutions must be demonstrated over the whole range of parameters 
(cf. figures 5 and 8). Miksis (1981) provides a one point comparison of results he 
obtained using three tessellations which agree to within better than 0.5%. However, 
his example is of a drop which is everywhere stable, K = 10, rather than of one which 
exhibits hysteresis and is thus extremely sensitive to mesh refinement. Sherwood 
(1988) reports results of mesh refinement when K = 20. I n  this situation, the aspect 
ratio of the drop after it has jumped from the lower branch of the hysteresis curve 
to the upper branch differs by 5% for the different meshes that he used. However, 
the difference between the solutions that he obtained using different meshes falls to 
about 1% as he follows the upper branch of the hysteresis curve. This is to be 
expected and is a drawback of the transient approach that he used relative to the 
method of solution employed here and by Miksis (1981). With a transient algorithm, 
a simulation should be started from an initial state as close as possible to the desired 
final steady or equilibrium state, for otherwise time truncation error accumulates 
and destroys the accuracy of the calculated solutions at  large times. 

Figure 9 shows how aspect ratio varies with field strength for the case of initially 
hemispherical drops (D  = 0) whose contact lines are fixed. The same three types of 
response are exhibited by drops whose contact lines are fixed as ones whose contact 
angles are prescribed. (i) When K < 14.5 f 0.5, the drops are everywhere stable over 
the region of field strengths examined and the drop deformation increases 
monotonically with increasing field strength. (ii) When 20.5f 0.5 > K 2 14.5k0.5 the 
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FIGURE 9. (a) Variation of aspect ratio a/b of initially hemispherical drops whose contact lines are 
fixed with field strength for various values of K .  (b )  Blow-up of the region showing transition in 
types of response. 

N! 

drop deformation exhibits hysteresis. With increasing aspect ratio, there is a loss of 
stability a t  the first turning point, which is subsequently regained at  the second 
turning point. Beyond the second turning point, the drop deformation increases with 
increasing field strength over the region of field strengths examined. Therefore, fixing 
the contact line of a drop instead of prescribing its contact angle enlarges the window 
of values of K for which hysteresis can be observed. (iii) When K > 20.5 & 0.5, families 
of equilibrium drop shapes lose stability a t  turning points with respect to field 
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FIGURE 11. Effect of drop size parameter, D ,  and contact-line boundary condition on drop 
stability for situations in which K = 21 : FCL, fixed contact line ; FCA, fixed contact angle. 

Nf 

strength. These families terminate beyond the turning points. This is the first time 
that the shapes and stability of dielectric drops whose contact lines are fixed have 
been calculated. 

Figure 10 shows the variation of the reciprocal of the average mean curvature a t  
the drop tip with increasing aspect ratio for initially hemispherical (D  = 0) drops 
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FIQURE 12. Drop shapes of axisymmetric supported drops when c f  = 0, D = 0, H = S ,  = 20, and 
K = 21 ; fixed contact angle. Values of the parallel-plate electric field strength corresponding to the 
aspect ratios shown are 0 for a/b  = 1.00, 0.4088 for a / b  = 1.95, 0.4172 for a/b = 2.71, 0.4163 for 
a / b  = 3.96, and 0.4172 for a/b  = 4.52. 

whose contact lines are fixed. When K > 20.5k0.5, the mean curvature at the drop 
tip initially increases smoothly, then rapidly goes to infinity. When K < 20.5 f 0.5, 
the mean curvature decreases smoothly over the entire range of aspect ratios studied 
and evidently tends to infinity only asymptotically. 

Figure 11 shows the effect of drop size parameter, D ,  and contact-line boundary 
condition on drop stability for situations in which K = 21. As expected, a drop whose 
contact line is fixed is more stable than one whose contact angle is prescribed. Also, 
figure 11 shows that it takes a larger field to make unstable a small drop than one 
of larger volume: this has ramifications in areas such as enhanced separation 
processes (Byers & Perona 1988). Moreover, figure 11 shows that the drop size 
parameter, D, can have a profound effect on the stability/instability of supported 
dielectric drops in an electric field. When D = 0.8, regardless of whether the contact 
line is fixed or the contact angle is prescribed, the families lose stability at a turning 
point and terminate almost immediately afterwards. This latter result stands in 
contrast to situations where D = 0 and -0.8. 

Figures 12-17 show sequences of drop shapes of a drop having a permittivity 21 
times that of the surroundings ( K =  21). In figures 12-14 the contact angle is 
prescribed; in figures 15-17 the contact line is fixed. Figure 12 shows the response of 
an initially hemispherical drop. The first two shapes lie along the lower, stable branch 
of the family of equilibrium shapes shown in figure 6. The third shape is the neutrally 
stable, equilibrium drop shape at  the first turning point. The fourth shape is the 
neutrally stable, equilibrium drop shape at the second turning point. The fifth shape 
is located on the upper stable branch of the family of equilibrium shapes. Plainly, the 
drop tip is becoming increasingly more conical as the aspect ratio increases, which 
implies that the curvature a t  the drop tip is tending to infinity (cf. figure 7) .  Figure 
13 shows sequences of shapes of a drop having a drop size parameter of D = 0.8, i.e. 
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FIQURE 13. Drop shapes of axisymmetric supported drops when G = 0, D = 0.8, H = S, = 20, and 
K = 21 ; fixed contact angle. Values of the parallel-plate electric field strength corresponding to the 
aspect ratios shown are 0 for a / b  = 3.00, 0.2975 for a/b = 7.50, 0.3478 for a/b = 9.21, 0.3632 for 
a / b  = 10.73, 0.3711 for a/b = 11.67, and 0.3753 for a/b = 12.71. 
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FIQURE 14. Drop shapes of axisymmetric supported drops when G = 0, D = -0.8, H = 8, = 20, 
and K = 21 ; fixed contact angle. Values of the parallel-plate electric field strength corresponding to 
the aspect ratios shown are 0 for a / b  = 0.33, 0.8896 for a/b = 0.49, 0.9976 for a/b = 0.78, 0.9228 
for a/b  = 1.15, and 0.8530 for a/b  = 1.70. 
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FIGURE 15. Drop shapes of axisymmetric supported drops when G = 0, D = 0, H = S, = 20, and 
K = 21 ; fixed contact line. Values of the parallel-plate electric strength corresponding to the aspect 
ratios shown are 0 for a / b  = 1.00, 0.04744 for alb  = 1.32, 0.4880 for a / b  = 1.51, 0.4838 for 
ajb  = 1.67, and 0.4753 for a / b  = 1.85. 
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FIGURE 16. Drop shapes of axisymmetric supported drops when = 0, D = 0.8, H = 8, = 20, and 
K = 21 ; fixed contact line. Values of the parallel-plate electric field strength corresponding to the 
aspect ratios shown are 0 for a / b  = 3.00, 0.3200 for a / b  = 4.02, 0.3602 for a/b  = 5.28, 0.3670 for 
a/b = 6.00, and 0.3708 for alb  = 6.63. 
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a drop making a fixed contact angle of about 37" with the supporting plate. All of the 
shapes shown in figure 13 are stable. Figure 14 shows a small drop having drop 
size parameter of D = -0.8, i.e. a drop making a fixed contact angle of about 143" 
with the supporting plate. The results show that drops up to an aspect ratio of 0.78 
(the first three shapes shown) are stable (cf. figure 11) .  The unstable shapes shown of 
drops that lie beyond the stability limit are akin to that of a jet emanating from a 
liquid pool. Figure 15 shows that an initially hemispherical drop whose contact line 
is fixed becomes very conical as its aspect ratio increases. The first three shapes 
shown are stable, the last two are unstable. The large drop in figure 16 with a drop 
size parameter of D = 0.8 behaves much like the equally sized drop in figure 13 whose 
contact angle is prescribed. All the shapes shown in figure 16 are stable, except the 
last one with alb = 6.63, which is the neutrally stable, equilibrium shape at  the 
turning point. The family of shapes shown in figure 16 terminates shortly after the 
turning point (cf. figure 11) .  Figure 17 is also similar to the case of the equally sized 
drop with a prescribed contact angle shown in figure 14. The first three shapes are 
stable. The last shape is unstable and is located a t  the point along the branch in figure 
11 where this family terminates. Again, the shape looks analogous to a jet emanating 
from a liquid pool, but is not as pronounced as that of the drop shown in figure 14. 
Drops having the same volume as but different values of K from those shown in 
figures 12-17 evolve through remarkably similar profiles as they deform. 

Figure 18 shows the evolution with increasing aspect ratio of the electric field 
vectors and equipotential lines of an initially hemispherical drop whose contact angle 
is fixed and which has a permittivity 21 times that of the surrounding fluid, i.e. 
K = 21. The electric field vectors are scaled differently inside and outside the drop to 
better illustrate the relative magnitudes of the vectors in each of these regions. The 
electric field is virtually uniform far from the drop both near the top plate and the 
asymptotic side boundary. Near the drop, the electric field is seen to have a large 
strength and to  vary rapidly compared to that far from the drop. Lines of constant 
potential are also highly curved in the vicinity of the drop. As the drop becomes 
increasingly elongated, figure 18 shows that the electric field strength builds a t  the 
drop tip. Indeed, the field strength at the drop tip can build so quickly that the 
electrical pressure that it generates there can no longer be counterbalanced by the 
action of surface tension in as highly curved a surface as the drop can develop. 
Figures 6 ,9 ,  and 11 show that the consequences of field concentration at the drop tips 
are loss of stability a t  turning points and ending of families of equilibrium shapes. 
Were the drops shown in figure 18 truly spheroids, the electric field inside them would 
be uniform, as is well known from classical electromagnetic theory (Landau & 
Lifshitz 1960). Remarkably, the field inside these drops is also nearly uniform even 
at  very high deformations, although the shapes of such highly deformed drops are far 
from spheroids. The latter fact may explain in part why the spheroidal 
approximation has often proved useful, with the few notable exceptions detailed 
earlier in this paper. 

Figure 19 shows the effect of plate spacing on the stability of initially hemispherical 
drops (D = 0) whose contact angles are prescribed. For K = 20, figure 19(a) shows 
that when the plate spacing is changed from H = 20 to 10, with S, = H ,  the 
computed field strength at an aspect ratio of 2.5 changes by less than 0.2%. 
Moreover, for a plate spacing of H = 10, changing the location of the asymptotic 
boundary S,,,, from S ,  = 10 to 20 changes the computed field strength at  an aspect 
ratio of 2.5 by less than 0.1%. The latter result is not shown in figure 19(a), but 
establishes the insensitivity of the computed results when H = 10 to further changes 
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FIQURE 17. Drop shapes of axisymmetric supported drops when G = 0, D = -0.8, H = S, = 20, 
and K = 21 ; fixed contact line. Values of the parallel-plate electric field strength corresponding to 
the aspect ratios shown are 0 for a/b  = 0.33,1.0469 for a/b = 0.41,1.1531 for a/b  = 0.55, and 1.0833 
for a / b  = 0.73. 
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in the location of the asymptotic boundary S,,, so long as S ,  > H .  When the plate 
spacing is decreased to H = 5 ,  S, 2 10 for computed results to be unaffected by the 
location of the asymptotic boundary S,,,. Figure 19(a) also shows that when 
H = 5 (with 8, = 10) the computed value of the field strength at an aspect ratio of 
2.5 differs by about 1.2% from that when H = 10. However, whereas the nature of 
the family of equilibrium shapes in the space of aspect ratio versus field strength is 
monotonic when H 2 10, it is multivalued when H = 5 .  Plainly, a drop whose aspect 
ratio increases monotonically with field strength when the distance between the two 
plates is large enough or infinite can exhibit hysteresis in drop deformation when the 
plates are sufficiently close. On the other hand, figure 19(b)  shows that a drop with 
a higher value of K than that of figure 19(a) and which exhibits hysteresis in drop 
deformation when the plates are sufficiently far apart will not do so when the plates 
are brought sufficiently close to one another. Figure 19(b) shows that when K = 21.5 
the family of equilibrium drop shapes exhibits hysteresis in drop deformation for 
H = 20, but terminates after the first turning point when the plate spacing is 
decreased to H = 5. When the value of K is sufficiently different from those for which 
hysteresis can be observed, figures 19(c) and 1 9 ( d )  show that large changes in plate 
spacing result in small quantitative, but not qualitative, changes in the response of 
the drops. At an aspect ratio of 2.5, changing the plate spacing from H = 20 to 5 
changes the computed value of the field strength by 1.5% when K+OO and by 1.1 YO 
when K = 15, but leaves unaffected the qualitative response of these shape families 
over the entire range of parameters examined. 
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5. Conclusions 
In  this paper, use of a mesh of composite cylindrical/spherical coordinates that 

moves as the drop deforms has allowed accurate calculation of drop shapes of very 
high aspect ratio. The new results conclusively show for the first time the evolution 
with electric field strength of families of dielectric drops and identify regions of 
parameter space over which hysteresis ought to be observed. Moreover, according to 
the foregoing results, the region of parameter space over which hysteresis can be 
observed is narrow, which may explain in part difficulties encountered by others in 
previous attempts a t  calculating it. 



Stability of dielectric drops in an electric field 507 

4 ,  

0.2s 0.27 0.29 0.31 0.33 0.35 
N! 

8 

7 

6 

S 

: 4  
b 

3 

2 

1 

0 I I I I I I I I 

0.3 0.4 0.5 0.6 0.7 

FIQURE 19. Effect of plate spacing H on the stability of initially hemispherical drops (D = 0) whose 
contact angles are prescribed: (a)  K = 20, (a) K = 21.5, (c) K+ CO, (d )  K = 15. 
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The results of this paper show that hysteresis should be observed over the range 
20.25f0.25 < K < 21.75f0.25 in situations in which ( a )  a sessile drop is hemi- 
spherical in the absence of electric field and makes a fixed contact angle of 90' with 
the supporting plate of a parallel-plate capacitor whose plates are infinitely far 
apart, and (b) a free drop is immersed in an externally applied field which is uniform 
infinitely far from the drop. In the closest experimental simulation of this situation, 
Bacri & Salin (1982) observed hysteresis in deformation of drops of a ferrofluid at an 
apparent value of the ratio of the drop permeability to that of the surrounding fluid 

I7 FLM 236 
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of about 40. Aside from the inherent loss in accuracy that would result from their 
method of determining K (see S l ) ,  their experiments were performed with a 
suspension of ferrofluid drops instead of isolated drops. For a suspension of spherical 
drops, the effective permittivity/permeability of the suspension, eefI, would be 
related to the permittivity/permeability of the suspending fluid or the solvent, 
by (Maxwell 1873 ; Jeffreys 1973) 

%= 1+3(-)$+f(a)$l+ a-1 ... . 
€out a + 2  (33) 

Here q5 is the volume fraction of drops in the suspension, a = ein/eOut, where ein is the 
permittivity/permeability of the drops, and f (a) is a tabulated function (Jeffreys 
1973). If a % 1 ,  then (a--l)/(a+2) z 1 and 

Beff= 1+3$+ 
'out 

It then follows that 

(5) =(") & 
'out exp 'efr theout 

(34) 

(35) 

In (35), (cin/q,ut)exp is the actual ratio of the permittivity/permeability of the drop 
to that of the surrounding fluid in the experiments and ( ~ ~ ~ / e ~ ~ ~ ) ~ ~  is the value of K 
used in theoretical calculations with a single drop. A modest loading of 1@20% 
would increase the apparent value of K used in Bacri & Salin's (1982) experiments by 
roughly 50% over that used in the theoretical calculations. 

I n  a typical ferrofluid, the relation between the applied field strength and the 
polarization is well-known to be nonlinear (Rosensweig 1985). The theoretical 
analysis presented in this paper and those of Miksis (1981), Sherwood (1988) and 
others do not account for the nonlinear polarization of the drop material in the 
applied field. This simplification reduces the Maxwell equations that govern the 
distribution of electrie/magnetic field inside the drop to the Laplace equation (2) and 
may also account in part for the discrepancy between theoretical predictions and 
experimental measurements. To date, only Boudouvis et al. (1988) have analysed the 
response of polarizable drops having a nonlinear constitutive relationship between 
the applied field and the induced polarization. However, Boudouvis et al. (1988) were 
primarily interested in the effect of magnetic fields on the wetting behaviour of 
ferrofluid drops and did not carry their calculations past the turning points 
uncovered in this paper. Because the Maxwell equations governing the distribution 
of electric/magnetic field for nonlinear materials are nonlinear partial differential 
equations, they cannot be solved by boundary-integral methods. However, these 
equations are readily amenable to solution by the Galerkin/finite-element outlined 
in $3. Extending the present analysis to the case of nonlinearly polarizable drops is 
a future goal of this research. 
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